Ultra-processed food consumption affects structural integrity of feeding-related brain regions independent of and via adiposity

14 min read
  • Small, D. M. & DiFeliceantonio, A. G. Processed foods and food reward. Science 363, 346–347 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cordain, L. et al. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. Am. J. Clin. Nutr. 71, 682–692 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Monteiro, C. A., Moubarac, J. C., Cannon, G., Ng, S. W. & Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. Off. J. Int. Assoc. Study Obes. 14 Suppl 2 (2013).

  • Sadler, C. R. et al. Processed food classification: Conceptualisation and challenges. Trends Food Sci. Technol 112, 149–162 (2021).

    Article 
    CAS 

    Google Scholar 

  • Knorr, D., Augustin, M. A. & Tiwari, B. Advancing the role of food processing for improved integration in sustainable food chains. Front. Nutr. 7, 34 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Monteiro, C. A. et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr 22, 936–941 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lane, M. M. et al. Ultraprocessed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies. Obes. Rev. 22, e13146 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Baker, P. et al. Ultra-processed foods and the nutrition transition: global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 21, e13126 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lane, M. M. et al. Ultra-processed food exposure and adverse health outcomes: umbrella review of epidemiological meta-analyses. BMJ 384, e077310 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crimarco, A., Landry, M. J. & Gardner, C. D. Ultra-processed foods, weight gain, and co-morbidity risk. Curr. Obes. Rep. 11, 80–92 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Dicken, S. J. & Batterham, R. L. The Role of Diet Quality in Mediating the Association between Ultra-Processed Food Intake, Obesity and Health-Related Outcomes: A Review of Prospective Cohort Studies. Nutrients 14, 23 (2022).

    Article 
    CAS 

    Google Scholar 

  • Juul, F., Vaidean, G., Lin, Y., Deierlein, A. L. & Parekh, N. Ultra-Processed Foods and Incident Cardiovascular Disease in the Framingham Offspring Study. J. Am. Coll. Cardiol. 77, 1520–1531 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Li, H. et al. Association of Ultraprocessed Food Consumption With Risk of Dementia: A Prospective Cohort Study. Neurology 99, e1056–e1066 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhave, V. M. et al. Associations Between Ultra-Processed Food Consumption and Adverse Brain Health Outcomes. Neurology 102, e209432 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Hall, K. D. et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab 30, 67–77.e3 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morys, F., Dadar, M. & Dagher, A. Association Between Midlife Obesity and Its Metabolic Consequences, Cerebrovascular Disease, and Cognitive Decline. J. Clin. Endocrinol. Metab. 106, e4260–e4274 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Medawar, E. & Witte, A. V. Impact of obesity and diet on brain structure and function: a gut–brain–body crosstalk. Proc. Nutr. Soc. 1–11 (2022).

  • D’Cunha, N. M. et al. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients 14, 2421 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tristan Asensi, M., Napoletano, A., Sofi, F. & Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 15, 1546 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sewaybricker, L. E., Huang, A., Chandrasekaran, S., Melhorn, S. J. & Schur, E. A. The significance of hypothalamic inflammation and gliosis for the pathogenesis of obesity in humans. Endocr. Rev. 44, 281–296 (2022).

    Article 
    PubMed Central 

    Google Scholar 

  • Sudlow, C. et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 12, e1001779 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, B. et al. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 14, 1998–2005 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Chen, X. et al. Associations of ultra-processed food consumption with cardiovascular disease and all-cause mortality: UK Biobank. Eur. J. Public Health 32, 779–785 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rauber, F. et al. Ultra-processed food consumption and risk of obesity: a prospective cohort study of UK Biobank. Eur. J. Nutr. 60, 2169–2180 (2021).

    Article 
    PubMed 

    Google Scholar 

  • England, P. H. McCance and Widdowson’s The Composition of Foods Integrated Dataset 2021. (2021).

  • Agency, F. S. Food Portion Sizes 3rd ed. (TSO) (1993).

  • Elliott, P., Peakman, T. C. & on behalf of UK Biobank The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 37, 234–244 (2008).

  • Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, A. & Tourville, J. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol. Front. Neurosci. 6 (2012).

  • Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Patenaude, B., Smith, S. M., Kennedy, D. N. & Jenkinson, M. A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56, 907–922 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Wakana, S. et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 36, 630–644 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Mori, S., Wakana, S., Nagae-Poetscher, L. M. & van Zijl, P. C. M. MRI Atlas of Human White Matter. Am. J. Neuroradiol. 27, 1384–1385 (2006).

    Google Scholar 

  • Daducci, A. et al. Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data. NeuroImage 105, 32–44 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61, 1000–1016 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Theaud, G. et al. TractoFlow: A robust, efficient and reproducible diffusion MRI pipeline leveraging Nextflow & Singularity. NeuroImage 218, 116889 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: Scientific containers for mobility of compute. PLoS ONE 12, e0177459 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Garyfallidis, E. et al. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinformatics 8, 8 (2014).

    Article 

    Google Scholar 

  • Tournier, J.-D. et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Avants, B., Tustison, N. J. & Song, G. Advanced Normalization Tools: V1.0. Insight J (2009).

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. Diffusion tensor imaging of the brain. Neurother. J. Am. Soc. Exp. Neurother. 4, 316–329 (2007).

    Google Scholar 

  • Xiao, Y. et al. An accurate registration of the BigBrain dataset with the MNI PD25 and ICBM152 atlases. Sci. Data 6, 210 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neudorfer, C. et al. A high-resolution in vivo magnetic resonance imaging atlas of the human hypothalamic region. Sci. Data 7, 305 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoaglin, D. C. & Iglewicz, B. Fine-Tuning Some Resistant Rules for Outlier Labeling. (1987).

  • Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R Package for Causal Mediation Analysis. J. Stat. Softw. 59 (2014).

  • Alfaro-Almagro, F. et al. Confound modelling in UK Biobank brain imaging. NeuroImage 224, 117002 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).

    Article 

    Google Scholar 

  • Torres-Collado, L. et al. A high consumption of ultra-processed foods is associated with higher total mortality in an adult Mediterranean population. Clin. Nutr. 43, 739–746 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ 365, l1451 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burger, K. S. Frontostriatal and behavioral adaptations to daily sugar-sweetened beverage intake: a randomized controlled trial1, 2, 3. Am. J. Clin. Nutr. 105, 555–563 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carnell, S. et al. Milkshake acutely stimulates dopamine release in ventral and dorsal striatum in healthy-weight individuals and patients with severe obesity undergoing bariatric surgery: a pilot study. Nutrients 15, 2671 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, D., Hu, X., Qian, L., O’Callaghan, J. P. & Hong, J.-S. Astrogliosis in CNS pathologies: is there a role for microglia? Mol. Neurobiol. 41, 232–241 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, T. & Zhang, S. Microgliosis in the Injured Brain: Infiltrating Cells and Reactive Microglia Both Play a Role. The Neuroscientist 22, 165–170 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Sung, H., Park, J. M., Oh, S. U., Ha, K. & Joung, H. Consumption of ultra-processed foods increases the likelihood of having obesity in Korean women. Nutrients 13, 698 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, K. et al. Association between childhood consumption of ultraprocessed food and adiposity trajectories in the avon longitudinal study of parents and children birth cohort. JAMA Pediatr 175, e211573 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beslay, M. et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity: A prospective analysis of the French NutriNet-Santé cohort. PLOS Med 17, e1003256 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fridén, M., Kullberg, J., Ahlström, H., Lind, L. & Rosqvist, F. Intake of ultra-processed food and ectopic-, visceral- and other fat depots: a cross-sectional study. Front. Nutr. 9, 774718 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Konieczna, J. et al. Contribution of ultra-processed foods in visceral fat deposition and other adiposity indicators: Prospective analysis nested in the PREDIMED-Plus trial. Clin. Nutr. 40, 4290–4300 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Machado, P. P. et al. Ultra-processed food consumption and obesity in the Australian adult population. Nutr. Diabetes 10, 39 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Canhada, S. L. et al. Ultra-processed foods, incident overweight and obesity, and longitudinal changes in weight and waist circumference: the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 23, 1076–1086 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Silva, F. M. et al. Consumption of ultra-processed food and obesity: cross sectional results from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) cohort (2008–2010). Public Health Nutr. 21, 2271–2279 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costa, C. S. et al. Ultra-processed food consumption and its effects on anthropometric and glucose profile: A longitudinal study during childhood. Nutr. Metab. Cardiovasc. Dis. 29, 177–184 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delpino, F. M. et al. Ultra-processed food and risk of type 2 diabetes: a systematic review and meta-analysis of longitudinal studies. Int. J. Epidemiol. 51, 1120–1141 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Barbosa, S. S. et al. A systematic review on processed/ultra-processed foods and arterial hypertension in adults and older people. Nutrients 14, 1215 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, L.-J., Hwang, S. B. & Shin, S. The longitudinal effect of ultra-processed food on the development of dyslipidemia/obesity as assessed by the NOVA system and food compass score. Mol. Nutr. Food Res. 67, 2300003 (2023).

    Article 
    CAS 

    Google Scholar 

  • Donat-Vargas, C. et al. High consumption of ultra-processed food is associated with incident dyslipidemia: a prospective study of older adults. J. Nutr. 151, 2390–2398 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rauber, F., Campagnolo, P. D. B., Hoffman, D. J. & Vitolo, M. R. Consumption of ultra-processed food products and its effects on children’s lipid profiles: A longitudinal study. Nutr. Metab. Cardiovasc. Dis. 25, 116–122 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lampe, L. et al. Visceral obesity relates to deep white matter hyperintensities via inflammation. Ann. Neurol. 85, 194–203 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • García-García, I., Michaud, A., Jurado, M. Á., Dagher, A. & Morys, F. Mechanisms linking obesity and its metabolic comorbidities with cerebral grey and white matter changes. Rev. Endocr. Metab. Disord. 23, 833–843 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lane, M. M. et al. Higher Ultra-Processed Food Consumption Is Associated with Greater High-Sensitivity C-Reactive Protein Concentration in Adults: Cross-Sectional Results from the Melbourne Collaborative Cohort Study. Nutrients 14, 3309 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martins, G. M. et al. Intake of ultra-processed foods is associated with inflammatory markers in Brazilian adolescents. Public Health Nutr. 25, 591–599 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Santos, F. S. et al. Consumption of ultra-processed foods and interleukin-6 in two cohorts from high- and middle-income countries. Br. J. Nutr. 1–28 (2022).

  • Lopes, A. E. D. S. C., Araújo, L. F., Levy, R. B., Barreto, S. M. & Giatti, L. Association between consumption of ultra-processed foods and serum C-reactive protein levels: cross-sectional results from the ELSA-Brasil study. Sao Paulo Med. J. 137, 169–176 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maki, K. A., Sack, M. N. & Hall, K. D. Ultra-processed foods: increasing the risk of inflammation and immune dysregulation? Nat. Rev. Immunol. 1–2 (2024).

  • Gearhardt, A. N. & DiFeliceantonio, A. G. Highly processed foods can be considered addictive substances based on established scientific criteria. Addiction (2022).

  • Berridge, K. C., Ho, C.-Y., Richard, J. M. & DiFeliceantonio, A. G. The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders. Brain Res. 1350, 43–64 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peciña, S. & Berridge, K. C. Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered ‘wanting’ for reward: entire core and medial shell mapped as substrates for PIT enhancement. Eur. J. Neurosci. 37, 1529–1540 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly, A. L., Baugh, M. E., Oster, M. E. & DiFeliceantonio, A. G. The impact of caloric availability on eating behavior and ultra-processed food reward. Appetite 178, 106274 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutiérrez-Martos, M. et al. Cafeteria diet induces neuroplastic modifications in the nucleus accumbens mediated by microglia activation. Addict. Biol. 23, 735–749 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Nieto, A. M., Catalfio, A. M., Papacostas Quintanilla, H., Alonso-Caraballo, Y. & Ferrario, C. R. Transient effects of junk food on NAc core MSN excitability and glutamatergic transmission in obesity-prone female rats. Obesity 31, 434–445 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oginsky, M. F. & Ferrario, C. R. Eating “junk food” has opposite effects on intrinsic excitability of nucleus accumbens core neurons in obesity-susceptible versus -resistant rats. J. Neurophysiol. 122, 1264–1273 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rapuano, K. M. et al. Nucleus accumbens cytoarchitecture predicts weight gain in children. Proc. Natl. Acad. Sci. USA117, 26977–26984 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rapuano, K. M. et al. Longitudinal evidence of a vicious cycle between nucleus accumbens microstructure and childhood weight gain. J. Adolesc. Health 70, 961–969 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tweedale, M. et al. Obesity and diffusion-weighted imaging of subcortical grey matter in young and older adults. Appetite 200, 107527 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Ottenheimer, D., Richard, J. M. & Janak, P. H. Ventral pallidum encodes relative reward value earlier and more robustly than nucleus accumbens. Nat. Commun. 9, 4350 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Münte, T. F. et al. The human globus pallidus internus is sensitive to rewards – Evidence from intracerebral recordings. Brain Stimulat. 10, 657–663 (2017).

    Article 

    Google Scholar 

  • Howell, N. A. et al. Preliminary evidence for human globus pallidus pars interna neurons signaling reward and sensory stimuli. Neuroscience 328, 30–39 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ottenheimer, D. J. et al. Reward activity in ventral pallidum tracks satiety-sensitive preference and drives choice behavior. Sci. Adv. 6, eabc9321 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Izadi, M. S. & Radahmadi, M. Overview of the central amygdala role in feeding behaviour. Br. J. Nutr. 127, 953–960 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Penzo, M. A. & Gao, C. The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci. 44, 538–549 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Castro, D. C., Cole, S. L. & Berridge, K. C. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front. Syst. Neurosci. 9 (2015).

  • Vainik, U., García-García, I. & Dagher, A. Uncontrolled eating: a unifying heritable trait linked with obesity, overeating, personality and the brain. Eur. J. Neurosci. 50, 2430–2445 (2019).

    Article 
    PubMed 

    Google Scholar 

  • García-García, I. et al. Liking and left amygdala activity during food versus nonfood processing are modulated by emotional context. Cogn. Affect. Behav. Neurosci. 20, 91–102 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Choi, Y. J., Lee, E. J. & Lee, J. E. The fornix: functional anatomy, normal neuroimaging, and various pathological conditions. Investig. Magn. Reson. Imaging 25, 59 (2021).

    Article 

    Google Scholar 

  • Wiss, D. A. & LaFata, E. M. Ultra-processed foods and mental health: where do eating disorders fit into the puzzle. Nutrients 16, 1955 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barbosa, D. A. N. et al. An orexigenic subnetwork within the human hippocampus. Nature 621, 381–388 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Astrup, A. & Monteiro, C. A. Does the concept of “ultra-processed foods” help inform dietary guidelines, beyond conventional classification systems? NO. Am. J. Clin. Nutr. (2022).

  • Monteiro, C. A. & Astrup, A. Does the concept of “ultra-processed foods” help inform dietary guidelines, beyond conventional classification systems? YES. Am. J. Clin. Nutr. (2022).

  • link

    You May Also Like

    More From Author

    + There are no comments

    Add yours