Effects of a healthy diet based on seed-rich vegetables on the gut microbiota and intrinsic brain activity in perimenopausal women: A pilot study on cognitive improvement

14 min read
  • Gava, G. et al. Cognition mood and sleep in menopausal transition: The role of menopause hormone therapy. Medicina (Kaunas) 55, 668 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Sussman, M. et al. Prevalence of menopausal symptoms among mid-life women: Findings from electronic medical records. BMC Women Health 15, 58 (2015).

    Article 

    Google Scholar 

  • Sassarini, D. J. Depression in midlife women. Maturitas 94, 149–154 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Santoro, N., Epperson, C. N. & Mathews, S. B. Menopausal symptoms and their management. Endocrinol. Metab. Clin. North Am. 44, 497–515 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herber-Gast, G.-C.M. & Mishra, G. D. Early severe vasomotor menopausal symptoms are associated with diabetes. Menopause 21, 855–860 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Thurston, R. C. Vasomotor symptoms: Natural history, physiology, and links with cardiovascular health. Climacteric 21, 96–100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, V. M. et al. What’s in a name: Are menopausal ‘hot flashes’ a symptom of menopause or a manifestation of neurovascular dysregulation?. Menopause 25, 700–703 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunneram, Y., Greenwood, D. C. & Cade, J. E. Diet, menopause and the risk of ovarian, endometrial and breast cancer. Proc. Nutr. Soc. 78, 438–448 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Brinton, R. D., Yao, J., Yin, F., Mack, W. J. & Cadenas, E. Perimenopause as a neurological transition state. Nat. Rev. Endocrinol. 11, 393–405 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morgan, K. N., Derby, C. A. & Gleason, C. E. Cognitive changes with reproductive aging, perimenopause, and menopause. Obstet. Gynecol. Clin. North Am. 45, 751–763 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Devi, G. Menopause-Related Cognitive Impairment. Obstet Gynecol 132, 1325–1327 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Mosconi, L. et al. Increased Alzheimer’s risk during the menopause transition: A 3-year longitudinal brain imaging study. PLoS ONE 13, e0207885 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guarner, F. & Malagelada, J.-R. Gut flora in health and disease. Lancet 361, 512–519 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Chen, K. L. & Madak-Erdogan, Z. Estrogen and microbiota crosstalk: Should we pay attention?. Trend. Endocrinol. Metab. 27, 752–755 (2016).

    Article 
    CAS 

    Google Scholar 

  • Flores, R. et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: A cross-sectional study. J. Transl. Med. 10, 253. (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. The relationship between menopausal syndrome and gut microbes. BMC Women Health 22, 437 (2022).

    Article 

    Google Scholar 

  • Baker, J. M., Al-Nakkash, L. & Herbst-Kralovetz, M. M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 103, 45–53 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vieira, A. T., Castelo, P. M., Ribeiro, D. A. & Ferreira, C. M. Influence of oral and gut microbiota in the health of menopausal women. Front. Microbiol. 8, 1884 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos-Marcos, J. A. et al. Influence of gender and menopausal status on gut microbiota. Maturitas 116, 43–53 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Meng, Q. et al. The gut microbiota during the progression of atherosclerosis in the perimenopausal period shows specific compositional changes and significant correlations with circulating lipid metabolites. Gut. Microb. 13(1), 27 (2021).

    Article 

    Google Scholar 

  • Cryan, J. F. et al. The Microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, C., Li, G., Huang, P., Liu, Z. & Zhao, B. The gut microbiota and Alzheimer’s Disease. J. Alzheimer. Dis. 58, 1–15 (2017).

    Article 

    Google Scholar 

  • Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sandhu, K. V. et al. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl. Res. 179, 223–244 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Foster, J. A. & McVey Neufeld, K.-A. Gut-brain axis: How the microbiome influences anxiety and depression. Trend. Neuro. sci. 36(305), 312 (2013).

    Google Scholar 

  • Seo, D.-O. & Holtzman, D. M. Gut Microbiota: From the forgotten organ to a potential key player in the pathology of Alzheimer’s disease. J. Gerontol. A. Biol. Sci. Med. Sci. 75, 1232–1241 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • C, M., A, S., Ma, M. & C, S. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28, 203 (2015).

    Google Scholar 

  • Y, S. et al. The gut microbiome as a therapeutic target for cognitive impairment. J. gerontol. Series A, Biol. Sci. Med. Sci. 75, 1242 (2020).

    Article 

    Google Scholar 

  • Liu, P. et al. Gut microbiota interacts with intrinsic brain activity of patients with amnestic mild cognitive impairment. CNS Neurosci. Ther. 27, 163–173 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • TILLISCH, K. et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology (2013).

    Article 
    PubMed 

    Google Scholar 

  • Tillisch, K. et al. Brain structure and response to emotional stimuli as related to gut microbial profiles in healthy women. Psychosom. Med. 79, 905–913 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, W., Sun, Y., Gao, H. & Qiu, J. A review of multi-modal magnetic resonance imaging studies on perimenopausal brain: A hint towards neural heterogeneity. Eur. Radiol. (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, M. et al. Changes in the regional homogeneity of resting-state magnetic resonance imaging in perimenopausal women. BMC Women. Health 21, 39 (2021).

    Article 

    Google Scholar 

  • Zhang, Y., Fu, W. Q., Liu, N. N. & Liu, H. J. Alterations of regional homogeneity in perimenopause: A resting-state functional MRI study. Climacteric 25, 460–466 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, L., Guo, W., Qiu, J., An, X. & Lu, W. Altered spontaneous brain activity in women during menopause transition and its association with cognitive function and serum estradiol level. Front. Endocrinol. (Lausanne) 12, 652512 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Lu, W., Guo, W., Cui, D., Dong, K. & Qiu, J. Effect of sex hormones on brain connectivity related to sexual function in perimenopausal women: A resting-state fmri functional connectivity study. J. Sex. Med. 16, 711–720 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Tran, K. H. et al. Decreased GABA+ Levels in the medial prefrontal cortex of perimenopausal women: A 3T 1H-MRS study. Int. J. Neuropsychopharmacol. 26, 32–41 (2022).

    Article 
    PubMed Central 

    Google Scholar 

  • Sheline, Y. I. & Raichle, M. E. Resting state functional connectivity in preclinical Alzheimer’s disease. Biol. Psychiatry 74, 340–347 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zang, Y., Jiang, T., Lu, Y., He, Y. & Tian, L. Regional homogeneity approach to fMRI data analysis. Neuroimage 22, 394–400 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Peltier, S. J. & Noll, D. C. T(2)(*) dependence of low frequency functional connectivity. Neuroimage 16, 985–992 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zou, Q.-H. et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172, 137–141 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zang, Y.-F. et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29, 83–91 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Liu, N., Zhang, Y., Liu, S., Zhang, X. & Liu, H. Brain functional changes in perimenopausal women: An amplitude of low-frequency fluctuation study. Menopause 28, 384–390 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brinton, R. D., Yao, J., Yin, F., Mack, W. J. & Cadenas, E. Perimenopause as a neurological transition state. Nat. Rev. Endocrinol. 11(7), 393–405. (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mosconi, L. et al. Perimenopause and emergence of an Alzheimer’s bioenergetic phenotype in brain and periphery. PLoS ONE 12(10), e0185926. (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, K. L. & Madak-Erdogan, Z. Estrogen and Microbiota Crosstalk: Should We Pay Attention?. Trend. Endocrinol. Metab. 27(11), 752–755. (2016).

    Article 
    CAS 

    Google Scholar 

  • Santoro, N., Roeca, C., Peters, B. A. & Neal-Perry, G. The Menopause Transition: Signs, Symptoms, and Management Options. J. Clin. Endocrinol. Metab. 106(1), 1–15 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gao, L. et al. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen) A comprehensive review. J. Ethnopharmacol. 294, 115387. (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moore, K., Hughes, C. F., Ward, M., Hoey, L. & McNulty, H. Diet, nutrition and the ageing brain: Current evidence and new directions. Proc. Nutr. Soc. 77, 152–163 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Moles, L. & Otaegui, D. The impact of diet on microbiota evolution and human health. Is diet an adequate tool for microbiota modulation?. Nutrients 12, 1654 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scarmeas, N., Anastasiou, C. A. & Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet. Neurol. 17, 1006–1015 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Nurk, E. et al. Cognitive performance among the elderly in relation to the intake of plant foods. Hordaland Health Study. Br. J. Nutr. 104, 1190–1201 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, W., Liu, Y., Xu, Q.-Q., Xian, Y.-F. & Lin, Z.-X. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3β pathway in experimental models of alzheimer’s disease. Oxid. Med. Cell Longev 2020, 4754195 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shiina, A. et al. An open study of sulforaphane-rich broccoli sprout extract in patients with schizophrenia. Clin. Psychopharmacol. Neurosci. 13, 62–67 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nouchi, R. et al. Brain training and sulforaphane intake interventions separately improve cognitive performance in healthy older adults, whereas a combination of these interventions does not have more beneficial effects: Evidence from a randomized controlled trial. Nutrient 13, 352 (2021).

    Article 
    CAS 

    Google Scholar 

  • Varangis, E., Razlighi, Q., Habeck, C. G., Fisher, Z. & Stern, Y. Between-network functional connectivity is modified by age and cognitive task domain. J. Cogn. Neurosci. 31, 607–622 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaynor, A. M. et al. Diet moderates the effect of resting state functional connectivity on cognitive function. Sci. Rep. 12, 16080 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berding, K. et al. Diet and the microbiota–Gut–Brain axis: Sowing the seeds of good mental health. Adv. Nutr. 12, 1239–1285 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Armet, A. M. et al. Rethinking healthy eating in light of the gut microbiome. Cell Host Microb. 30, 764–785 (2022).

    Article 
    CAS 

    Google Scholar 

  • Liu, Z. et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat. Commun. 11, 855 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, H. et al. β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome 8, 143 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kakarla, R. et al. Current understanding and future directions of cruciferous vegetables and their phytochemicals to combat neurological diseases. Phytother. Res. 38(3), 1381–1399. (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, R. et al. Sulforaphane-driven reprogramming of gut microbiome and metabolome ameliorates the progression of hyperuricemia. J. Adv. Res. 52, 19–28. (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bacon, J. L. The Menopausal Transition. Obstet. Gynecol. Clin. North Am. 44, 285–296 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Mosconi, L. et al. Perimenopause and emergence of an Alzheimer’s bioenergetic phenotype in brain and periphery. PLoS ONE 12, e0185926 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGrattan, A. M. et al. Diet and inflammation in cognitive ageing and Alzheimer’s Disease. Curr. Nutr. Rep. 8, 53–65 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dinan, T. G. et al. Feeding melancholic microbes: MyNewGut recommendations on diet and mood. Clin. Nutr. 38, 1995–2001 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Prehn, K. et al. Caloric restriction in older adults-differential effects of weight loss and reduced weight on brain structure and function. Cereb. Cortex. 27, 1765–1778 (2017).

    PubMed 

    Google Scholar 

  • Burokas, A., Moloney, R. D., Dinan, T. G. & Cryan, J. F. Microbiota regulation of the Mammalian gut-brain axis. Adv. Appl. Microbiol. 91, 1–62 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Junges, V. M., Closs, V. E., Nogueira, G. M. & Gottlieb, M. G. V. Crosstalk between gut microbiota and central nervous system: A focus on Alzheimer’s disease. Curr. Alzheimer Res. 15, 1179–1190 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Whitehouse, P. J. & George, D. R. Dignity for all: How the challenges of Alzheimer’s disease need rethinking and revaluing. JAD. 90(4), 1831–1833. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Thanapornsangsuth, P. et al. Prospective evaluation of plasma phosphorylated tau in a real-life memory clinic in Thailand. Alzheimer’s & dementia. 19(6), 2745–2749. (2023).

    Article 
    CAS 

    Google Scholar 

  • Psaltopoulou, T. et al. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann. Neurol. 74, 580–591 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Opie, R. S. et al. Dietary recommendations for the prevention of depression. Nutr. Neurosci. 20, 161–171 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nanri, A. et al. Dietary patterns and depressive symptoms among Japanese men and women. Eur. J. Clin. Nutr. 64, 832–839 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scarmeas, N., Anastasiou, C. A. & Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 17(11), 1006–1015. (2018).

    Article 
    PubMed 

    Google Scholar 

  • 李运伦, 赵婧 & 霍青. 莱菔子的现代研究及临床应用. 长春中医药大学学报 0, (2011).

  • Gao, L. et al. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review. J. Ethnopharmacol. 294, 115387 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johnson, A. J. et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 25, 789-802.e5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Magne, F. et al. The Firmicutes/Bacteroidetes ratio: A Relevant marker of gut dysbiosis in obese patients?. Nutrient. 12, 1474 (2020).

    Article 
    CAS 

    Google Scholar 

  • Stewart, C. S., Duncan, S. H. & Cave, D. R. Oxalobacter formigenes and its role in oxalate metabolism in the human gut. FEMS Microbiol. Lett. 230, 1–7 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nishida, A. et al. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 11, 1–10 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Baker, S. & The, H. C. Recent insights into Shigella. Curr. Opin. Infect. Dis. 31, 449–454 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • von Graevenitz, A. The role of Aeromonas in diarrhea: A review. Infection 35, 59–64 (2007).

    Article 

    Google Scholar 

  • Kitazawa, M., Oddo, S., Yamasaki, T. R., Green, K. N. & LaFerla, F. M. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J. Neurosci. 25, 8843–8853 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawagoe, T., Onoda, K. & Yamaguchi, S. Subjective memory complaints are associated with altered resting-state functional connectivity but not structural atrophy. Neuroimage Clin. 21, 101675 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jung, J. et al. Impact of lingual gyrus volume on antidepressant response and neurocognitive functions in major depressive disorder: A voxel-based morphometry study. J. Affect. Disord. 169, 179–187 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Kumar, N. & Priyadarshi, B. Differential effect of aging on verbal and visuo-spatial working memory. Aging Dis. 4, 170–177 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeager, B. E. et al. Central precuneus lesions are associated with impaired executive function. Brain Struct. Funct. 227, 3099–3108 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Hippocampus-based dynamic functional connectivity mapping in the early stages of Alzheimer’s disease. J. Alzheimer’s Dis. 85, 1795–1806 (2022).

    Article 
    CAS 

    Google Scholar 

  • Pang, L. et al. Disruption of cerebellar-cerebral functional connectivity in temporal lobe epilepsy and the connection to language and cognitive functions. Front. Neurosci. 16, 871128 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nie, K. et al. Roseburia intestinalis: A beneficial gut organism from the discoveries in genus and species. Front. Cell Infect. Microbiol. 11, 757718 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eicher, T. P. & Mohajeri, M. H. Overlapping mechanisms of action of brain-active bacteria and bacterial metabolites in the pathogenesis of common brain diseases. Nutrient. 14, 2661 (2022).

    Article 
    CAS 

    Google Scholar 

  • McCracken, B. A. & Nathalia Garcia, M. Phylum Synergistetes in the oral cavity: A possible contributor to periodontal disease. Anaerobe 68, 102250 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horz, H.-P., Citron, D. M., Warren, Y. A., Goldstein, E. J. C. & Conrads, G. Synergistes group organisms of human origin. J. Clin. Microbiol. 44, 2914–2920 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palmas, V. et al. Gut microbiota markers and dietary habits associated with extreme longevity in healthy sardinian centenarians. Nutrient. 14, 2436 (2022).

    Article 
    CAS 

    Google Scholar 

  • Schulz, K. F., Altman, D. G. & Moher, D. Consort 2010 statement: Updated guidelines for reporting parallel group randomised trials. J. Pharmacol. Pharmacother. 1, 100–107 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Folstein, M. F., Folstein, S. E. & McHugh, P. R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, J., Li, J. & Huang, X. The beijing version of the montreal cognitive assessment as a brief screening tool for mild cognitive impairment: A community-based study. BMC Psychiatry 12, 156 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blake, M. R., Raker, J. M. & Whelan, K. Validity and reliability of the bristol stool form scale in healthy adults and patients with diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 44, 693–703 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome. Biol. 12, R60 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, G. M. et al. PICRUSt2: An improved and extensible approach for metagenome inference. 672295 Preprint at (2019).

  • Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, X.-Z. et al. RESTplus: an improved toolkit for resting-state functional magnetic resonance imaging data processing. Sci. Bull. 64, 953–954 (2019).

    Article 

    Google Scholar 

  • Yan. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. (2010) https://doi.org/10.3389/fnsys.2010.00013.

  • Yan, C.-G., Wang, X.-D., Zuo, X.-N. & Zang, Y.-F. DPABI: Data processing & analysis for (Resting-State) brain imaging. Neuroinform 14, 339–351 (2016).

    Article 

    Google Scholar 

  • link

    You May Also Like

    More From Author

    + There are no comments

    Add yours