Multimodal brain imaging of insomnia, depression and anxiety symptoms indicates transdiagnostic commonalities and differences

9 min read
  • Wittchen, H. U. et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 655–679 (2011).

    Article 
    PubMed 

    Google Scholar 

  • van Someren, E. J. W. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol. Rev. 101, 995–1046 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Cuijpers, P. The challenges of improving treatments for depression. JAMA 320, 2529–2530 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Tyrer, P. & Baldwin, D. Generalised anxiety disorder. Lancet 368, 2156–2166 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Schiel, J. E. et al. Associations between sleep health and grey matter volume in the UK Biobank cohort (n = 33 356). Brain Commun. 5, fcad200 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Harrewijn, A. et al. Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group. Transl. Psychiatry 11, 502 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jansen, P. R. et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 51, 394–403 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Romero, C. et al. Exploring the genetic overlap between twelve psychiatric disorders. Nat. Genet. 54, 1795–1802 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ohayon, M. M. & Roth, T. Place of chronic insomnia in the course of depressive and anxiety disorders. J. Psychiatr. Res. 37, 9–15 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Soehner, A. M. & Harvey, A. G. Prevalence and functional consequences of severe insomnia symptoms in mood and anxiety disorders: results from a nationally representative sample. Sleep 35, 1367–1375 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serra-Blasco, M. et al. Structural brain correlates in major depression, anxiety disorders and post-traumatic stress disorder: a voxel-based morphometry meta-analysis. Neurosci. Biobehav. Rev. 129, 269–281 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Janiri, D. et al. Shared neural phenotypes for mood and anxiety disorders: a meta-analysis of 226 task-related functional imaging studies. JAMA Psychiatry 77, 172–179 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Abdelhack, M. et al. Opposing brain signatures of sleep in task-based and resting-state conditions. Nat. Commun. 14, 7927 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leerssen, J. et al. Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder: results from the ENIGMA MDD Working Group. Transl. Psychiatry 10, 425 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benson, K. L., Winkelman, J. W. & Gönenç, A. Disrupted white matter integrity in primary insomnia and major depressive disorder: relationships to sleep quality and depression severity. J. Sleep Res. 32, e13913 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bresser, T. et al. The role of brain white matter in depression resilience and response to sleep interventions. Brain Commun. 5, fcad210 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. et al. Dynamic functional abnormalities in generalized anxiety disorders and their increased network segregation of a hyperarousal brain state modulated by insomnia. J. Affect. Disord. 246, 338–345 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Pace-Schott, E. F. et al. Resting state functional connectivity in primary insomnia, generalized anxiety disorder and controls. Psychiatry Res. Neuroimaging 265, 26–34 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Shen, Z. et al. Deficits in brain default mode network connectivity mediate the relationship between poor sleep quality and anxiety severity. Sleep 47, zsad296 (2023).

    Article 

    Google Scholar 

  • Li, M. et al. Abnormalities of thalamus volume and resting state functional connectivity in primary insomnia patients. Brain Imaging Behav. 13, 1193–1201 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Nugent, A. C., Davis, R. M., Zarate, C. A. Jr & Drevets, W. C. Reduced thalamic volumes in major depressive disorder. Psychiatry Res. 213, 179–185 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCutcheon, R. A. et al. Shared and separate patterns in brain morphometry across transdiagnostic dimensions. Nat. Mental Health 1, 55–65 (2023).

    Article 

    Google Scholar 

  • van Erp, T. G. et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 21, 547–553 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Hibar, D. P. et al. Subcortical volumetric abnormalities in bipolar disorder. Mol. Psychiatry 21, 1710–1716 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stolicyn, A. et al. Comprehensive assessment of sleep duration, insomnia, and brain structure within the UK Biobank cohort. Sleep 47, zsad274 (2023).

    Article 
    PubMed Central 

    Google Scholar 

  • Jespersen, K. V. et al. Reduced structural connectivity in insomnia disorder. J. Sleep Res. 29, e12901 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Tamm, S. et al. No association between amygdala responses to negative faces and depressive symptoms: cross-sectional data from 28,638 individuals in the UK Biobank cohort. Am. J. Psychiatry 179, 509–513 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Schiel, J. E. et al. Associations between sleep health and amygdala reactivity to negative facial expressions in the UK Biobank cohort. Biol. Psychiatry 92, 693–700 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Calhoun, V. D. & Sui, J. Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biol. Psychiatry 1, 230–244 (2016).

    Google Scholar 

  • McEwen, B. S., Nasca, C. & Gray, J. D. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology 41, 3–23 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Genzel, L., Spoormaker, V. I., Konrad, B. N. & Dresler, M. The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol. Learn. Mem. 122, 110–121 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Wassing, R. et al. Restless REM sleep impedes overnight amygdala adaptation. Curr. Biol. 29, 2351–2358.e4 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Cabrera, Y. et al. Overnight neuronal plasticity and adaptation to emotional distress. Nat. Rev. Neurosci. 25, 253–271 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakua, H. et al. Systematic comparisons of different quality control approaches applied to three large pediatric neuroimaging datasets. NeuroImage 274, 120119 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Helwegen, K., Libedinsky, I. & van den Heuvel, M. P. Statistical power in network neuroscience. Trends Cogn. Sci. 27, 282–301 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, S. M., Alfaro-Almagro, F. & Miller, K. L. UK Biobank Brain Imaging Documentation (Oxford Centre for Functional MRI of the Brain (FMRIB/WIN), Oxford University on behalf of UK Biobank, accessed 30 January 2024); https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf.

  • Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).

    Article 
    PubMed 

    Google Scholar 

  • de Lange, S. C., Helwegen, K. & van den Heuvel, M. P. Structural and functional connectivity reconstruction with CATO—a Connectivity Analysis TOolbox. NeuroImage 273, 120108 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Chang, L. C., Walker, L. & Pierpaoli, C. Informed RESTORE: a method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts. Magn. Reson. Med. 68, 1654–1663 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Reus, M. A. An Eccentric Perspective on Brain Networks (Uitgeverij BOXPress, 2015).

  • Mori, S., Crain, B. J., Chacko, V. P. & van Zijl, P. C. M. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–2154 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F. & Weinberger, D. R. The amygdala response to emotional stimuli: a comparison of faces and scenes. NeuroImage 17, 317–323 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Qian, Y. et al. Observational and genetic evidence highlight the association of human sleep behaviors with the incidence of fracture. Commun. Biol. 4, 1339 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kroenke, K., Spitzer, R. L. & Williams, J. B. The Patient Health Questionnaire-2: validity of a two-item depression screener. Med. Care 41, 1284–1292 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Weiss, A. & Deary, I. J. A new look at neuroticism: should we worry so much about worrying? Curr. Dir. Psychol. Sci. 29, 92–101 (2020).

    Article 

    Google Scholar 

  • Weiss, A. et al. Conditioning on a collider may or may not explain the relationship between lower neuroticism and premature mortality in the study by Gale et al. (2017): a reply to Richardson, Davey Smith, and Munafò (2019). Psychol. Sci. 30, 633–638 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eysenck, S. B., Eysenck, H. J. & Barrett, P. A revised version of the psychoticism scale. Pers. Individ. Differ. 6, 21–29 (1985).

    Article 

    Google Scholar 

  • Alfaro-Almagro, F. et al. Confound modelling in UK Biobank brain imaging. NeuroImage 224, 117002 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. NeuroImage 92, 381–397 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Manly, B. F. Randomization, Bootstrap and Monte Carlo Methods in Biology (Chapman and Hall/CRC, 2007).

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Article 

    Google Scholar 

  • Beam, E., Potts, C., Poldrack, R. A. & Etkin, A. A data-driven framework for mapping domains of human neurobiology. Nat. Neurosci. 24, 1733–1744 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansen, J. Y. et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat. Neurosci. 25, 1569–1581 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cammoun, L. et al. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 203, 386–397 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Scholtens, L. H., de Lange, S. C. & van den Heuvel, M. P. Simple brain plot (v1.0.0). Zenodo (2021).

  • link

    You May Also Like

    More From Author

    + There are no comments

    Add yours